Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast.

Identifieur interne : 000577 ( Main/Exploration ); précédent : 000576; suivant : 000578

Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast.

Auteurs : Harmen Hawer [Allemagne] ; Koray Ütkür [Allemagne] ; Meike Arend [Allemagne] ; Klaus Mayer [Allemagne] ; Lorenz Adrian [Allemagne] ; Ulrich Brinkmann [Allemagne] ; Raffael Schaffrath [Allemagne]

Source :

RBID : pubmed:30335802

Descripteurs français

English descriptors

Abstract

In eukaryotes, the modification of an invariant histidine (His-699 in yeast) residue in translation elongation factor 2 (EF2) with diphthamide involves a conserved pathway encoded by the DPH1-DPH7 gene network. Diphthamide is the target for diphtheria toxin and related lethal ADP ribosylases, which collectively kill cells by inactivating the essential translocase function of EF2 during mRNA translation and protein biosynthesis. Although this notion emphasizes the pathological importance of diphthamide, precisely why cells including our own require EF2 to carry it, is unclear. Mining the synthetic genetic array (SGA) landscape from the budding yeast Saccharomyces cerevisiae has revealed negative interactions between EF2 (EFT1-EFT2) and diphthamide (DPH1-DPH7) gene deletions. In line with these correlations, we confirm in here that loss of diphthamide modification (dphΔ) on EF2 combined with EF2 undersupply (eft2Δ) causes synthetic growth phenotypes in the composite mutant (dphΔ eft2Δ). These reflect negative interference with cell performance under standard as well as thermal and/or chemical stress conditions, cell growth rates and doubling times, competitive fitness, cell viability in the presence of TOR inhibitors (rapamycin, caffeine) and translation indicator drugs (hygromycin, anisomycin). Together with significantly suppressed tolerance towards EF2 inhibition by cytotoxic DPH5 overexpression and increased ribosomal -1 frame-shift errors in mutants lacking modifiable pools of EF2 (dphΔ, dphΔ eft2Δ), our data indicate that diphthamide is important for the fidelity of the EF2 translocation function during mRNA translation.

DOI: 10.1371/journal.pone.0205870
PubMed: 30335802
PubMed Central: PMC6193676


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast.</title>
<author>
<name sortKey="Hawer, Harmen" sort="Hawer, Harmen" uniqKey="Hawer H" first="Harmen" last="Hawer">Harmen Hawer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Kassel</region>
<settlement type="city">Cassel (Hesse)</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Utkur, Koray" sort="Utkur, Koray" uniqKey="Utkur K" first="Koray" last="Ütkür">Koray Ütkür</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Kassel</region>
<settlement type="city">Cassel (Hesse)</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Arend, Meike" sort="Arend, Meike" uniqKey="Arend M" first="Meike" last="Arend">Meike Arend</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Kassel</region>
<settlement type="city">Cassel (Hesse)</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mayer, Klaus" sort="Mayer, Klaus" uniqKey="Mayer K" first="Klaus" last="Mayer">Klaus Mayer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg</wicri:regionArea>
<wicri:noRegion>Penzberg</wicri:noRegion>
<wicri:noRegion>Penzberg</wicri:noRegion>
<wicri:noRegion>Penzberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adrian, Lorenz" sort="Adrian, Lorenz" uniqKey="Adrian L" first="Lorenz" last="Adrian">Lorenz Adrian</name>
<affiliation wicri:level="3">
<nlm:affiliation>AG Geobiochemie, Department Isotopenbiogeochemie, Helmholtz-Zentrum für Umweltforschung GmbH-UFZ, Leipzig, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>AG Geobiochemie, Department Isotopenbiogeochemie, Helmholtz-Zentrum für Umweltforschung GmbH-UFZ, Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
<orgName type="university">Université technique de Berlin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Brinkmann, Ulrich" sort="Brinkmann, Ulrich" uniqKey="Brinkmann U" first="Ulrich" last="Brinkmann">Ulrich Brinkmann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg</wicri:regionArea>
<wicri:noRegion>Penzberg</wicri:noRegion>
<wicri:noRegion>Penzberg</wicri:noRegion>
<wicri:noRegion>Penzberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schaffrath, Raffael" sort="Schaffrath, Raffael" uniqKey="Schaffrath R" first="Raffael" last="Schaffrath">Raffael Schaffrath</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Kassel</region>
<settlement type="city">Cassel (Hesse)</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30335802</idno>
<idno type="pmid">30335802</idno>
<idno type="doi">10.1371/journal.pone.0205870</idno>
<idno type="pmc">PMC6193676</idno>
<idno type="wicri:Area/Main/Corpus">000430</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000430</idno>
<idno type="wicri:Area/Main/Curation">000430</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000430</idno>
<idno type="wicri:Area/Main/Exploration">000430</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast.</title>
<author>
<name sortKey="Hawer, Harmen" sort="Hawer, Harmen" uniqKey="Hawer H" first="Harmen" last="Hawer">Harmen Hawer</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Kassel</region>
<settlement type="city">Cassel (Hesse)</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Utkur, Koray" sort="Utkur, Koray" uniqKey="Utkur K" first="Koray" last="Ütkür">Koray Ütkür</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Kassel</region>
<settlement type="city">Cassel (Hesse)</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Arend, Meike" sort="Arend, Meike" uniqKey="Arend M" first="Meike" last="Arend">Meike Arend</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Kassel</region>
<settlement type="city">Cassel (Hesse)</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mayer, Klaus" sort="Mayer, Klaus" uniqKey="Mayer K" first="Klaus" last="Mayer">Klaus Mayer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg</wicri:regionArea>
<wicri:noRegion>Penzberg</wicri:noRegion>
<wicri:noRegion>Penzberg</wicri:noRegion>
<wicri:noRegion>Penzberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adrian, Lorenz" sort="Adrian, Lorenz" uniqKey="Adrian L" first="Lorenz" last="Adrian">Lorenz Adrian</name>
<affiliation wicri:level="3">
<nlm:affiliation>AG Geobiochemie, Department Isotopenbiogeochemie, Helmholtz-Zentrum für Umweltforschung GmbH-UFZ, Leipzig, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>AG Geobiochemie, Department Isotopenbiogeochemie, Helmholtz-Zentrum für Umweltforschung GmbH-UFZ, Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin</wicri:regionArea>
<placeName>
<region type="land" nuts="3">Berlin</region>
<settlement type="city">Berlin</settlement>
</placeName>
<orgName type="university">Université technique de Berlin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Brinkmann, Ulrich" sort="Brinkmann, Ulrich" uniqKey="Brinkmann U" first="Ulrich" last="Brinkmann">Ulrich Brinkmann</name>
<affiliation wicri:level="1">
<nlm:affiliation>Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg</wicri:regionArea>
<wicri:noRegion>Penzberg</wicri:noRegion>
<wicri:noRegion>Penzberg</wicri:noRegion>
<wicri:noRegion>Penzberg</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schaffrath, Raffael" sort="Schaffrath, Raffael" uniqKey="Schaffrath R" first="Raffael" last="Schaffrath">Raffael Schaffrath</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Kassel</region>
<settlement type="city">Cassel (Hesse)</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Substitution (MeSH)</term>
<term>Anisomycin (pharmacology)</term>
<term>Caffeine (pharmacology)</term>
<term>Cell Division (drug effects)</term>
<term>Cinnamates (pharmacology)</term>
<term>Diphtheria Toxin (toxicity)</term>
<term>Gene Deletion (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Histidine (analogs & derivatives)</term>
<term>Histidine (genetics)</term>
<term>Histidine (metabolism)</term>
<term>Hygromycin B (analogs & derivatives)</term>
<term>Hygromycin B (pharmacology)</term>
<term>Methyltransferases (genetics)</term>
<term>Methyltransferases (metabolism)</term>
<term>Peptide Elongation Factor 1 (genetics)</term>
<term>Peptide Elongation Factor 1 (metabolism)</term>
<term>Peptide Elongation Factor 2 (deficiency)</term>
<term>Peptide Elongation Factor 2 (genetics)</term>
<term>Phenotype (MeSH)</term>
<term>Protein Biosynthesis (drug effects)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Sirolimus (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Anisomycine (pharmacologie)</term>
<term>Biosynthèse des protéines (effets des médicaments et des substances chimiques)</term>
<term>Caféine (pharmacologie)</term>
<term>Cinnamates (pharmacologie)</term>
<term>Division cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Délétion de gène (MeSH)</term>
<term>Facteur-1 d'élongation de la chaîne peptidique (génétique)</term>
<term>Facteur-1 d'élongation de la chaîne peptidique (métabolisme)</term>
<term>Facteur-2 d'élongation de la chaîne peptidique (déficit)</term>
<term>Facteur-2 d'élongation de la chaîne peptidique (génétique)</term>
<term>Histidine (analogues et dérivés)</term>
<term>Histidine (génétique)</term>
<term>Histidine (métabolisme)</term>
<term>Hygromycine (analogues et dérivés)</term>
<term>Hygromycine (pharmacologie)</term>
<term>Methyltransferases (génétique)</term>
<term>Methyltransferases (métabolisme)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Substitution d'acide aminé (MeSH)</term>
<term>Toxine diphtérique (toxicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Histidine</term>
<term>Hygromycin B</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Peptide Elongation Factor 2</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Histidine</term>
<term>Methyltransferases</term>
<term>Peptide Elongation Factor 1</term>
<term>Peptide Elongation Factor 2</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Histidine</term>
<term>Methyltransferases</term>
<term>Peptide Elongation Factor 1</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anisomycin</term>
<term>Caffeine</term>
<term>Cinnamates</term>
<term>Hygromycin B</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Histidine</term>
<term>Hygromycine</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Division</term>
<term>Protein Biosynthesis</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Facteur-2 d'élongation de la chaîne peptidique</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Biosynthèse des protéines</term>
<term>Division cellulaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteur-1 d'élongation de la chaîne peptidique</term>
<term>Facteur-2 d'élongation de la chaîne peptidique</term>
<term>Histidine</term>
<term>Methyltransferases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur-1 d'élongation de la chaîne peptidique</term>
<term>Histidine</term>
<term>Methyltransferases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Anisomycine</term>
<term>Caféine</term>
<term>Cinnamates</term>
<term>Hygromycine</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Diphtheria Toxin</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Toxine diphtérique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Substitution</term>
<term>Gene Deletion</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Phenotype</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Délétion de gène</term>
<term>Phénotype</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Substitution d'acide aminé</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In eukaryotes, the modification of an invariant histidine (His-699 in yeast) residue in translation elongation factor 2 (EF2) with diphthamide involves a conserved pathway encoded by the DPH1-DPH7 gene network. Diphthamide is the target for diphtheria toxin and related lethal ADP ribosylases, which collectively kill cells by inactivating the essential translocase function of EF2 during mRNA translation and protein biosynthesis. Although this notion emphasizes the pathological importance of diphthamide, precisely why cells including our own require EF2 to carry it, is unclear. Mining the synthetic genetic array (SGA) landscape from the budding yeast Saccharomyces cerevisiae has revealed negative interactions between EF2 (EFT1-EFT2) and diphthamide (DPH1-DPH7) gene deletions. In line with these correlations, we confirm in here that loss of diphthamide modification (dphΔ) on EF2 combined with EF2 undersupply (eft2Δ) causes synthetic growth phenotypes in the composite mutant (dphΔ eft2Δ). These reflect negative interference with cell performance under standard as well as thermal and/or chemical stress conditions, cell growth rates and doubling times, competitive fitness, cell viability in the presence of TOR inhibitors (rapamycin, caffeine) and translation indicator drugs (hygromycin, anisomycin). Together with significantly suppressed tolerance towards EF2 inhibition by cytotoxic DPH5 overexpression and increased ribosomal -1 frame-shift errors in mutants lacking modifiable pools of EF2 (dphΔ, dphΔ eft2Δ), our data indicate that diphthamide is important for the fidelity of the EF2 translocation function during mRNA translation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30335802</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>e0205870</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0205870</ELocationID>
<Abstract>
<AbstractText>In eukaryotes, the modification of an invariant histidine (His-699 in yeast) residue in translation elongation factor 2 (EF2) with diphthamide involves a conserved pathway encoded by the DPH1-DPH7 gene network. Diphthamide is the target for diphtheria toxin and related lethal ADP ribosylases, which collectively kill cells by inactivating the essential translocase function of EF2 during mRNA translation and protein biosynthesis. Although this notion emphasizes the pathological importance of diphthamide, precisely why cells including our own require EF2 to carry it, is unclear. Mining the synthetic genetic array (SGA) landscape from the budding yeast Saccharomyces cerevisiae has revealed negative interactions between EF2 (EFT1-EFT2) and diphthamide (DPH1-DPH7) gene deletions. In line with these correlations, we confirm in here that loss of diphthamide modification (dphΔ) on EF2 combined with EF2 undersupply (eft2Δ) causes synthetic growth phenotypes in the composite mutant (dphΔ eft2Δ). These reflect negative interference with cell performance under standard as well as thermal and/or chemical stress conditions, cell growth rates and doubling times, competitive fitness, cell viability in the presence of TOR inhibitors (rapamycin, caffeine) and translation indicator drugs (hygromycin, anisomycin). Together with significantly suppressed tolerance towards EF2 inhibition by cytotoxic DPH5 overexpression and increased ribosomal -1 frame-shift errors in mutants lacking modifiable pools of EF2 (dphΔ, dphΔ eft2Δ), our data indicate that diphthamide is important for the fidelity of the EF2 translocation function during mRNA translation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hawer</LastName>
<ForeName>Harmen</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ütkür</LastName>
<ForeName>Koray</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arend</LastName>
<ForeName>Meike</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-7561-1098</Identifier>
<AffiliationInfo>
<Affiliation>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mayer</LastName>
<ForeName>Klaus</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adrian</LastName>
<ForeName>Lorenz</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>AG Geobiochemie, Department Isotopenbiogeochemie, Helmholtz-Zentrum für Umweltforschung GmbH-UFZ, Leipzig, Germany.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Fachgebiet Geobiotechnologie, Technische Universität Berlin, Berlin, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brinkmann</LastName>
<ForeName>Ulrich</ForeName>
<Initials>U</Initials>
<Identifier Source="ORCID">0000-0002-5558-0212</Identifier>
<AffiliationInfo>
<Affiliation>Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center München, Penzberg, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schaffrath</LastName>
<ForeName>Raffael</ForeName>
<Initials>R</Initials>
<Identifier Source="ORCID">0000-0001-9484-5247</Identifier>
<AffiliationInfo>
<Affiliation>Institut für Biologie, Fachgebiet Mikrobiologie, Universität Kassel, Kassel, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>10</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002934">Cinnamates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004167">Diphtheria Toxin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020648">Peptide Elongation Factor 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020652">Peptide Elongation Factor 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3G6A5W338E</RegistryNumber>
<NameOfSubstance UI="D002110">Caffeine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3XQ2233B0B</RegistryNumber>
<NameOfSubstance UI="D006921">Hygromycin B</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3YJY415DDI</RegistryNumber>
<NameOfSubstance UI="C026273">hygromycin A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QD397987E</RegistryNumber>
<NameOfSubstance UI="D006639">Histidine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6C74YM2NGI</RegistryNumber>
<NameOfSubstance UI="D000841">Anisomycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>75645-22-6</RegistryNumber>
<NameOfSubstance UI="C027527">diphthamide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D008780">Methyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.98</RegistryNumber>
<NameOfSubstance UI="C076235">DPH5 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019943" MajorTopicYN="N">Amino Acid Substitution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000841" MajorTopicYN="N">Anisomycin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002110" MajorTopicYN="N">Caffeine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002455" MajorTopicYN="N">Cell Division</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002934" MajorTopicYN="N">Cinnamates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004167" MajorTopicYN="N">Diphtheria Toxin</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006639" MajorTopicYN="N">Histidine</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006921" MajorTopicYN="N">Hygromycin B</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008780" MajorTopicYN="N">Methyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020648" MajorTopicYN="N">Peptide Elongation Factor 1</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020652" MajorTopicYN="N">Peptide Elongation Factor 2</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014176" MajorTopicYN="N">Protein Biosynthesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>KM and UB are employed by and members of Roche Pharma Research & Early Development. Roche is interested in targeted therapies and diagnostics. This does not alter our adherence to PLOS ONE policies on sharing data and materials. All other authors (HH, KÜ, MA, LA and RS) have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>10</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>10</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>10</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30335802</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0205870</ArticleId>
<ArticleId IdType="pii">PONE-D-18-23186</ArticleId>
<ArticleId IdType="pmc">PMC6193676</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Hum Mol Genet. 2012 Dec 15;21(26):5472-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23001565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Apr 30;136(17):6179-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24739148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Feb 1;18(3):320-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2005 Apr;11(4):424-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15769872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):253-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9419362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1992 Mar 25;20(6):1425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1561104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13817-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22869748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxins (Basel). 2013 May 03;5(5):958-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23645155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Oct 06;33(18):5740-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 Jun 12;9:1130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29946299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2008;62:271-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18785839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 4;109(49):19983-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23169644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Mar 06;10(3):e0119261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25747122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2017 Sep 2;14(9):1209-1222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28277930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 May 09;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27159452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 May;26(10):3835-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16648478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Apr 13;287(16):13194-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22367199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2014 Feb 5;136(5):1754-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24422557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Nov 27;326(5957):1231-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19965467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2002 May;44(3):865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11994165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Aug 6;274(32):22423-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10428815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Aug 23;288(34):24647-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23853096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 20;281(42):31616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16923813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2018 Aug 17;430(17):2677-2687</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29886014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jan 22;327(5964):425-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20093466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Sep 23;353(6306):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27708008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1996 Nov 15;274(5290):1201-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8895471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Apr 26;288(17):12305-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23486472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2013 Nov-Dec;48(6):515-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23971743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15637051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2016 Sep;18(9):3044-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26718631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Nov;24(21):9487-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15485916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Jun 18;161(7):1606-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26052047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Mar 10;23(5):1008-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14976550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2017 May 5;7(5):1539-1549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28325812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(2):e1003334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23468660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Sep;69(5):1221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2008 Oct 1;121(Pt 19):3140-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18765564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Oct 27;281(43):32639-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 Mar 16;359(6381):1247-1250</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29590073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Mar 15;30(6):e23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Apr;7(4):e1001362</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21490951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Aug 25;263(24):11692-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3042777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell. 2014 Nov 29;1(12):416-424</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28357221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2008 May;52(5):1623-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18285480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 May 6;269(18):13497-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8175783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jul;69(1):175-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2011 Aug;278(15):2613-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21624055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2017 Apr 26;139(16):5680-5683</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28383907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2017 Sep 2;14(9):1252-1259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27937809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Gene Regul Mech. 2018 Apr;1861(4):409-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29222069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:3-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Aug 3;7(1):7225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28775286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2001 Oct;18(14):1285-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11571753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Sep 30;13(12):1099-133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9301019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2011 Jan;7(1):74-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20931132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hum Genet. 2018 Apr;63(4):529-532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29362492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2012 Jan 18;134(2):773-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22188241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Physiol Biochem. 2017;44(2):505-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29145210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Dec 15;44(22):10946-10959</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27496282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Inf Model. 2018 Jul 23;58(7):1406-1414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29927239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Oct 30;43(19):9489-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26283182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Nov 25;255(22):10710-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7430147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2015 Mar;282(5):819-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25604895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Sep;49(5):1297-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12940988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Sep;12(9):4026-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1508200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2018 Apr 6;293(14):5220-5229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29453282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Dec 1;19(23):2816-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16322557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2018 Aug 1;10(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29610120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2014 Dec;94(6):1213-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25352115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):13227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2011 Feb;22(1):66-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21111604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1985 Dec;5(12):3357-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3915773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Aug;9(8):1019-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2015 Jan 6;23(1):149-160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25543256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 May 09;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27159451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):10732-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26261303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hum Genet. 2018 Apr;63(4):487-491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29410513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell. 2014 May 20;1(6):203-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28357244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1977;46:69-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Nov 9;49(44):9649-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20873788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Jun 17;465(7300):891-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20559380</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Berlin</li>
<li>District de Kassel</li>
<li>District de Leipzig</li>
<li>Hesse (Land)</li>
<li>Saxe (Land)</li>
</region>
<settlement>
<li>Berlin</li>
<li>Cassel (Hesse)</li>
<li>Leipzig</li>
</settlement>
<orgName>
<li>Université technique de Berlin</li>
</orgName>
</list>
<tree>
<country name="Allemagne">
<region name="Hesse (Land)">
<name sortKey="Hawer, Harmen" sort="Hawer, Harmen" uniqKey="Hawer H" first="Harmen" last="Hawer">Harmen Hawer</name>
</region>
<name sortKey="Adrian, Lorenz" sort="Adrian, Lorenz" uniqKey="Adrian L" first="Lorenz" last="Adrian">Lorenz Adrian</name>
<name sortKey="Adrian, Lorenz" sort="Adrian, Lorenz" uniqKey="Adrian L" first="Lorenz" last="Adrian">Lorenz Adrian</name>
<name sortKey="Arend, Meike" sort="Arend, Meike" uniqKey="Arend M" first="Meike" last="Arend">Meike Arend</name>
<name sortKey="Brinkmann, Ulrich" sort="Brinkmann, Ulrich" uniqKey="Brinkmann U" first="Ulrich" last="Brinkmann">Ulrich Brinkmann</name>
<name sortKey="Mayer, Klaus" sort="Mayer, Klaus" uniqKey="Mayer K" first="Klaus" last="Mayer">Klaus Mayer</name>
<name sortKey="Schaffrath, Raffael" sort="Schaffrath, Raffael" uniqKey="Schaffrath R" first="Raffael" last="Schaffrath">Raffael Schaffrath</name>
<name sortKey="Utkur, Koray" sort="Utkur, Koray" uniqKey="Utkur K" first="Koray" last="Ütkür">Koray Ütkür</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000577 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000577 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30335802
   |texte=   Importance of diphthamide modified EF2 for translational accuracy and competitive cell growth in yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30335802" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020